跳至主要內容

双指针

HeChuangJun约 2547 字大约 8 分钟

283移动零leetcode

提示
给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。
请注意 ,必须在不复制数组的情况下原地对数组进行操作。
示例 1:输入: nums = [0,1,0,3,12]输出: [1,3,12,0,0]
示例 2:输入: nums = [0] 输出: [0]

左指针左边均为非零数;
右指针左边直到左指针处均为零。
时间复杂度:O(n),其中 n 为序列长度。每个位置至多被遍历两次。
空间复杂度:O(1)。只需要常数的空间存放若干变量。
class Solution {
    public void moveZeroes(int[] nums) {
        int n = nums.length, left = 0, right = 0;
        while (right < n) {
            if (nums[right] != 0) {
                swap(nums, left, right);
                left++;
            }
            right++;
        }
    }

    public void swap(int[] nums, int left, int right) {
        int temp = nums[left];
        nums[left] = nums[right];
        nums[right] = temp;
    }
}

11盛最多水的容器leetcode

提示
给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。
找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
返回容器可以储存的最大水量。
说明:你不能倾斜容器。
示例 1:输入:[1,8,6,2,5,4,8,3,7]输出:49
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:输入:height = [1,1] 输出:1

时间复杂度:O(N),双指针总计最多遍历整个数组一次。
空间复杂度:O(1),只需要额外的常数级别的空间。
不断移动较小的高直至最大
public class Solution {
    public int maxArea(int[] height) {
        int l = 0, r = height.length - 1;
        int ans = 0;
        while (l < r) {
            int area = Math.min(height[l], height[r]) * (r - l);
            ans = Math.max(ans, area);
            if (height[l] <= height[r]) {
                ++l;
            }
            else {
                --r;
            }
        }
        return ans;
    }
}

t15三数之和

给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i != j、i != k 且 j != k ,同时还满足 nums[i] + nums[j] + nums[k] == 0 。请你返回所有和为 0 且不重复的三元组。
注意:答案中不可以包含重复的三元组。
示例 1:输入:nums = [-1,0,1,2,-1,-4] 输出:[[-1,-1,2],[-1,0,1]]
解释:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0 。
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0 。
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0 。
不同的三元组是 [-1,0,1] 和 [-1,-1,2] 。
注意,输出的顺序和三元组的顺序并不重要。
示例 2:输入:nums = [0,1,1] 输出:[] 解释:唯一可能的三元组和不为 0 。
示例 3:输入:nums = [0,0,0] 输出:[[0,0,0]] 解释:唯一可能的三元组和为 0 。
15.三数之和.gif

时间复杂度:O(N^2),其中 N 是数组 nums 的长度。
空间复杂度:O(logN)。我们忽略存储答案的空间,额外的排序的空间复杂度为 O(logN)。然而我们修改了输入的数组 nums,在实际情况下不一定允许,因此也可以看成使用了一个额外的数组存储了 nums 的副本并进行排序,空间复杂度为 O(N)。
首先将数组排序,然后有一层for循环,i从下标0的地方开始,同时定一个下标left 定义在i+1的位置上,定义下标right 在数组结尾的位置上。
依然还是在数组中找到 abc 使得a + b +c =0,我们这里相当于 a = nums[i],b = nums[left],c = nums[right]。
接下来如何移动left 和right呢, 如果nums[i] + nums[left] + nums[right] > 0 就说明 此时三数之和大了,因为数组是排序后了,所以right下标就应该向左移动,这样才能让三数之和小一些。
如果 nums[i] + nums[left] + nums[right] < 0 说明 此时 三数之和小了,left 就向右移动,才能让三数之和大一些,直到left与right相遇为止。
class Solution {
    public List<List<Integer>> threeSum(int[] nums) {
        List<List<Integer>> result = new ArrayList<>();
        Arrays.sort(nums);
	      // 找出a + b + c = 0
        // a = nums[i], b = nums[left], c = nums[right]
        for (int i = 0; i < nums.length; i++) {
	    // 排序之后如果第一个元素已经大于零,那么无论如何组合都不可能凑成三元组,直接返回结果就可以了
            if (nums[i] > 0) { 
                return result;
            }

            if (i > 0 && nums[i] == nums[i - 1]) {  // 去重a
                continue;
            }

            int left = i + 1;
            int right = nums.length - 1;
            while (right > left) {
                int sum = nums[i] + nums[left] + nums[right];
                if (sum > 0) {
                    right--;
                } else if (sum < 0) {
                    left++;
                } else {
                    result.add(Arrays.asList(nums[i], nums[left], nums[right]));
		    // 去重逻辑应该放在找到一个三元组之后,对b 和 c去重
                    while (right > left && nums[right] == nums[right - 1]) right--;
                    while (right > left && nums[left] == nums[left + 1]) left++;
                    
                    right--; 
                    left++;
                }
            }
        }
        return result;
    }
}

18四数之和

题意:给定一个包含 n 个整数的数组 nums 和一个目标值 target,判断 nums 中是否存在四个元素 a,b,c 和 d ,使得 a + b + c + d 的值与 target 相等?找出所有满足条件且不重复的四元组。
注意:答案中不可以包含重复的四元组。
示例: 给定数组 nums = [1, 0, -1, 0, -2, 2],和 target = 0。 满足要求的四元组集合为: [ [-1, 0, 0, 1], [-2, -1, 1, 2], [-2, 0, 0, 2] ]

基本解法就是在15三数之和的基础上再套一层for循环。但是有一些细节需要注意,例如: 不要判断nums[k] > target 就返回了,三数之和 可以通过 nums[i] > 0 就返回了,因为 0 已经是确定的数了,四数之和这道题目 target是任意值。比如:数组是[-4, -3, -2, -1],target是-10,不能因为-4 > -10而跳过。但是我们依旧可以去做剪枝,逻辑变成nums[i] > target && (nums[i] >=0 || target >= 0)就可以了。

15.三数之和 的双指针解法是一层for循环num[i]为确定值,然后循环内有left和right下标作为双指针,找到nums[i] + nums[left] + nums[right] == 0。
四数之和的双指针解法是两层for循环nums[k] + nums[i]为确定值,依然是循环内有left和right下标作为双指针,找出nums[k] + nums[i] + nums[left] + nums[right] == target的情况,三数之和的时间复杂度是O(n^2),四数之和的时间复杂度是O(n^3) 。那么一样的道理,五数之和、六数之和等等都采用这种解法。

对于15.三数之和 双指针法就是将原本暴力O(n^3)的解法,降为O(n^2)的解法,四数之和的双指针解法就是将原本暴力O(n^4)的解法,降为O(n^3)的解法。
之前我们讲过哈希表的经典题目:454.四数相加II ,相对于本题简单很多,因为本题是要求在一个集合中找出四个数相加等于target,同时四元组不能重复。
而454.四数相加II 是四个独立的数组,只要找到A[i] + B[j] + C[k] + D[l] = 0就可以,不用考虑有重复的四个元素相加等于0的情况,所以相对于本题还是简单了不少!

class Solution {
    public List<List<Integer>> fourSum(int[] nums, int target) {
        List<List<Integer>> result = new ArrayList<>();
        Arrays.sort(nums);
       
        for (int i = 0; i < nums.length; i++) {
		
            // nums[i] > target 直接返回, 剪枝操作
            if (nums[i] > 0 && nums[i] > target) {
                return result;
            }
		
            if (i > 0 && nums[i - 1] == nums[i]) {    // 对nums[i]去重
                continue;
            }
            
            for (int j = i + 1; j < nums.length; j++) {

		            // nums[i]+nums[j] > target 直接返回, 剪枝操作
		            if (nums[i]+nums[j] > 0 && nums[i]+nums[j] > target) {
		                return result;
		            }

                if (j > i + 1 && nums[j - 1] == nums[j]) {  // 对nums[j]去重
                    continue;
                }

                int left = j + 1;
                int right = nums.length - 1;
                while (right > left) {
		                // nums[k] + nums[i] + nums[left] + nums[right] > target int会溢出
                    long sum = (long) nums[i] + nums[j] + nums[left] + nums[right];
                    if (sum > target) {
                        right--;
                    } else if (sum < target) {
                        left++;
                    } else {
                        result.add(Arrays.asList(nums[i], nums[j], nums[left], nums[right]));
                        // 对nums[left]和nums[right]去重
                        while (right > left && nums[right] == nums[right - 1]) right--;
                        while (right > left && nums[left] == nums[left + 1]) left++;

                        left++;
                        right--;
                    }
                }
            }
        }
        return result;
    }
}

42接雨水leetcode

给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。
示例 1:输入:height = [0,1,0,2,1,0,1,3,2,1,2,1]输出:6
解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。
示例 2:输入:height = [4,2,0,3,2,5] 输出:9

时间复杂度:O(n),其中 n 是数组 height 的长度。两个指针的移动总次数不超过 n。
空间复杂度:O(1)。只需要使用常数的额外空间。
维护两个指针 left 和 right,以及两个变量 leftMax 和 rightMax,初始时 left=0,right=n−1,leftMax=0,rightMax=0。指针 left 只会向右移动,指针 right 只会向左移动,在移动指针的过程中维护两个变量 leftMax 和 rightMax 的值。
当两个指针没有相遇时,进行如下操作:
使用 height[left] 和 height[right] 的值更新 leftMax 和 rightMax 的值;
如果 height[left]<height[right],则必有 leftMax<rightMax,下标 left 处能接的雨水量等于 leftMax−height[left],将下标 left 处能接的雨水量加到能接的雨水总量,然后将 left 加 1(即向右移动一位);
如果 height[left]≥height[right],则必有 leftMax≥rightMax,下标 right 处能接的雨水量等于 rightMax−height[right],将下标 right 处能接的雨水量加到能接的雨水总量,然后将 right 减 1(即向左移动一位)。
class Solution {
    public int trap(int[] height) {
        int ans = 0;
        int left = 0, right = height.length - 1;
        int leftMax = 0, rightMax = 0;
        while (left < right) {
            leftMax = Math.max(leftMax, height[left]);
            rightMax = Math.max(rightMax, height[right]);
            if (height[left] < height[right]) {
                ans += leftMax - height[left];//左边最大值-当前值=雨水值,不用管右边与左边最大值的关系
                ++left;
            } else {
                ans += rightMax - height[right];//右边最大值-当前值=雨水值,不用管右边与右边最大值的关系
                --right;
            }
        }
        return ans;
    }
}